2. Задача Марковица. Наиболее часто встречаемая задача оптимизации портфеля была впервые описана Г. Марковичем и имеет следующую постановку. Допустим, что задан некоторый уровень доходности , ниже которого инвестор не хотел бы иметь ожидаемую доходность. Тогда оптимальный портфель выбирается среди всех возможных так, чтобы риск инвестиций, определяемый дисперсией доходности портфеля, был минимальным. В нашем простейшем случае задача Марковица может быть формализована следующим образом:
Рис. 4. Иллюстрация к задаче Марковица
Естественно предположить, что , иначе задача либо не имеет решения, либо становится тривиальной. Так как - возрастающая функция на отрезке [0, 1], ее минимум достигается в минимально возможном значении , определяемым условием . В силу того, что также возрастает на [0, 1], минимальное возможное значение определяется уравнением (см. рис. 4.). Таким образом, имеет место равенство
из которого находим значение :
Соответственно,
Таким образом, оптимальный портфель в задаче Марковица в простейшем случае безрискового и рискового активов определяется следующей парой:
Нетрудно убедиться, что ожидаемая доходность и среднее квадратическое отклонение по оптимальному портфелю в этом случае находятся по формулам:
3. Соотношение «риск—доходность». Предпочтение инвестора определяется минимизацией некоторой функции, связывающей риск и доходность каждого портфеля. Пусть, как и прежде, . Введем функцию рискованности следующим образом:
Здесь коэффициент q > 0 определяет предпочтение доходности перед риском для каждого инвестора. Если инвестор в большей степени предпочитает определять свои вложения доходностью, чем риском, то он выбирает коэффициент с большим значением. Если же для инвестора более важным является риск, то он выберет коэффициент q маленьким.
В итоге задача оптимизации портфеля в этом случае имеет следующий формальный вид:
Как видно, функция является квадратным трехчленом с положительным старшим коэффициентом. Поэтому график этой функции представляет параболу, ветви которой направлены вверх. Значит, функция имеет глобальный минимум, определяемый вершиной параболы. Координата вершины параболы равна
(15)
Так как , координата . Рассмотрим два различных варианта выбора оптимального портфеля. Первый вариант возникает в ситуации, когда . Так как в этом случае функция убывает на всем отрезке [0, 1], ее минимум на отрезке [0, 1] достигается в точке . Нетрудно заметить, что неравенство эквивалентно условию
Это удобно переписать в следующем виде:
(16)
Если это неравенство не выполнено и имеет место следующее соотношение:
то и минимум функции на отрезке [0, 1] достигается в точке . Тогда оптимальный портфель выбирается по второму варианту и равен . В силу формулы (15) нетрудно получить его окончательный вид:
Сатьи по теме:
Банки Франции
В банковской системе Франции различаются коммерческие депозитные банки, которые специализируются в области краткосрочных кредитных операций, и инвестиционные или деловые банки, финансирующие промышленность путем эмиссионно-учредительных операций. Третьей разновидностью, занимающей промежуточное по ...
Виды ценных бумаг и их основные характеристики
Ценной бумагой является документ, удостоверяющий с соблюдением установленной формы и обязательных реквизитов имущественные права, осуществление или передача которых возможны только при его предъявлении [49, С.78].
С передачей ценной бумаги переходят все удостоверяемые ею права в совокупности.
В ...
Порядок погашения ипотечного кредитования
После получения ипотечного кредита и благополучной покупки на эти средства жилья, наступает время расчетов по кредиту. «Погасить кредит» означает, что на указанный кредитором счет зачислена вся сумма кредита и причитающихся по нему процентов. Ипотечное кредитование – долгосрочный проект и погашени ...