Портфель инвестиций

Страница 3

Рис. 2. Кривая «риск-доходность» портфеля из двух акций

Рассмотрим теперь отрезок, соединяющий вершины и . Параметрически каждая точка этого отрезка определяется координатами , где

. (11)

Тогда для доказательства выпуклости влево построенной кривой необходимо убедиться, что для любого точка находится левее точки . Проверим, что в действительности

или

Для этого преобразуем формулу дисперсии доходности портфеля в следующем виде

Тогда с учетом (11) получаем, что

(12)

Так как параметр t берется из интервала (0,1), знак второго слагаемого в правом выражении выписанного равенства определяется разностью . Рассмотрим коэффициент корреляции , определяющий зависимость доходностей акций первого и второго типов. По определению, ковариация может быть получена из коэффициента корреляции по следующей формуле:

.

Подставляя это в равенство (12) и взяв корень, находим, что

. (13)

Так как коэффициент корреляции удовлетворяет неравенствам отсюда сразу следует, что , причем равенство здесь возможно только в том случае, если . Таким образом, при имеет место строгое неравенство , и, значит, выпуклость влево построенной кривой. Как уже было замечено, если коэффициент корреляции равен единице, то и построенная кривая есть отрезок, соединяющий точки и . В этом вырожденном случае вероятностными методами нетрудно показать, что доходности и как случайные величины связаны между собой линейной зависимостью почти наверное:

п.н., (14)

с положительным коэффициентом линейной зависимости (здесь константы и неслучайны). Это означает, что рассматриваемые акции являются сильно зависимыми и риск инвестиций в портфель из этих акций может быть уменьшен только пропорционально уменьшению ожидаемой доходности портфеля. Противоположной данному случаю является ситуация, когда коэффициент корреляции . В этом случае также имеет место линейная зависимость (14). Если в результате доходность по одной акции оказалась отрицательной, то доходность по другой обязательно положительна. Последнее дает возможность снизить риски до минимального для этого вырожденного случая. Рассмотрим вид допустимой кривой на плоскости «риск-доходность» при условии . Подставляя это значение в формулы (11) и (13), получаем

Страницы: 1 2 3 4

Сатьи по теме:

Система управления процессами в Западно-Сибирском банке ОАО «Сбербанк России»
История ОАО «Сбербанк России» началась 170 лет назад, в 1841 году. За почти два столетия банк завоевал статус крупнейшего финансового института страны. Сбербанк сегодня – это современный универсальный банк, который предлагает широкий спектр услуг для всех групп клиентов, активно участвует в социа ...

Анализ проблем и пути совершенствования депозитных операций
Банковские учреждения оказывают клиентам множество услуг, вступают в сложные взаимоотношения между собой и другими субъектами хозяйственной жизни, выполняют разнообразные функции, главными из которых являются кредитно-депозитные операции. Для выживания в условиях обострившейся конкуренции банки д ...

Организационно - экономическая характеристика АКБ” Правэкс- Банк”
Коммерческие банки – основное звено кредитной системы страны, в которое входят кредитные учреждения, осуществляющие разнообразные банковские операции для своих клиентов на началах коммерческого расчета. Для этого они используют не только свой собственный капитал, но и привлеченный финансовый капит ...

Навигация

Copyright © 2025 - All Rights Reserved - www.qupack.ru